

1. Function and Configuration

Roller or Lift gates are frequently installed in safety fences. They allow a regular or individual access to production plants, which may be necessary for the inserting or removal of work pieces. If the roller gate is not completely closed, it has to be guaranteed that the plant operator cannot be endangered.

Safety switches, which are integrated into the safety chain of the plant control, serve for recognising the safe position (gate closed). Independently of it further position switches are used, which control the movement of the gate and detect its position.

The advantages of non-contact transponder-based safety switches (insensitivity to dirt, mechanical adjustment, manipulation etc.) can also be used for recognising and controlling the gate position. This special type of SIDENT/IV does not only monitor the "safe" position of the gate; it is further able to detect and to report a total of fife positions (end positions, switching the speed from slow to fast and from fast to slow).
The SIDENT/IV is mounted at a suitable place of the gate (e.g. laterally the gate) so that it can detect the actuating element which is mounted at the gate or integrated into the gate itself. A specific code is assigned to each of the five actuating elements ("safe" end position, two or three changeover positions and one not safety-related end position).
On basis of this specific code SIDENT/IV is able to recognise which actuating element is in the reading range at the moment.

All electronic components of the safety switch are fitted in just one sensor housing. Connectors are used for the connection. Three LEDs indicate the present status of the "safe" part (red for "no transponder recognised" and/or "error" and $2 \times$ green for "transponder recognised"), four further LEDs indicate the present position.
The (two-channel) evaluation electronics of the safety-related part is electrically isolated from that part of the switch, which only controls the movement, so that no reaction is possible. Only the reading head, which is turned towards the actuating elements, is common to both systems.

2. Versions

2.1 SIDENT/IV for 4 Positions

(Ref. no. 13.14-47)
The safety-related position (gate closed) as well as position 1 of the not safety-related part are identical. This means, that the safety-related outputs and one not safety-related output respond to one and the same actuating element.

2.2 SIDENT/IV for 5 Positions

(Ref. no. 13.14-47-100)
The safety-related position (gate closed) is not identical to any of the not safety-related positions. The switch-off and switching points are independent of the safe position (gate closed).

2.3 SIDENT/IV for 4 Positions with Storage Behaviour (Ref. no. 13.14-47-201)

The safety-related position (gate closed) and position 1 of the not safety-related part are identical. In order to activate the frequency converters directly the positions 2 and 3 are equipped with storage behaviour. When passing position 2 the output A3.2 obtains the status "High" and maintains it until position 1 has been reached. When opening the gate and passing position 3 the output A3.3 obtains the status "High". When position 4 has been reached (upper end position) the output is reset to status "Low" and A3.4 is activated.

2.4 SIDENT/IV for 4 Positions with 2 Safe Positions and Storage Behaviour (alternating gate) (Ref. no. 13.14-47-202)

Both safety-related positions (gate closed in front and/or in the back) and position 1 of the not safety-related part are identical. For the direct activation of the frequency converters the switchover position 2 and 3 are equipped with storage behaviour. When passing position 2 the output A3.2 obtains the status "High" and maintains it until position 1 has been reached (gate closed in front). When opening the gate and passing position 3 the output A3.3 obtains the status "High". When reaching position 4 (door closed in back) the output is reset on status "Low" and A3.1 is activated.

Example of Application with 4 positions:

Conventional Roller Gate Monitoring

Innovative Roller Gate Monitoring

Block diagram of the basic configuration

3. System Description

3.1 Principle of the SIDENT/IV Safety Switch

The SIDENT/IV safety switch works together with its actuating element SIDENT/B using the identification principle with a 6 -digit safety code which is issued only once. Only one "key", namely the matching SIDENT/B actuating element with its imprinted code, actually fits each "lock" of the SIDENT/IV safety switch.
The safety switch and actuating element work on a noncontact basis. Release is given only when the actuating element is within the response range of the switch and the code number of the actuating element matches that of the switch. At this point, the two green safety-switch indicators (CH1 + CH2) light up. The hysteresis zone is identified by the blinking of the red display (ERR), while the green indicators continue to flash (both outputs remain either connected or disconnected, depending on the direction of the movement, and show the typical hysteresis behaviour). After exit from the hysteresis zone, both green indicators extinguish and a red indicator lights up.

The code numbers in the safety switch undergo a twochannel analysis procedure. The two channels monitor each other on a reciprocal basis. Each channel is provided with one output which features two output transistors. The output is continuously monitored also in a switched condition.
By the monitoring of the outputs a short circuit between output and supply is recognised and a switching-on is prevented. In the event of a ground fault or low voltage at one output, both outputs are switched-off. The presence of such disturbance is verified cyclically. This results in short pulses on the non-faulty channel and, at the same time, constitutes a short-circuit protection during normal operation. A resetting of short-circuit monitoring is not necessary due to the intermittent operation mode.
The evaluation device is typically a safety PLC (programmable logic controller) or an emergency stop relay (e.g. Klaschka type ZSY). It supplies the operating voltage for the safety switch and its two outputs. The supply of the outputs can give short timing signals which allow the PLC to check the connecting lines for circuit breaks and cross circuits (for further details, refer to the technical data of the respective safety PLC). These are tolerated by SIDENT/IV to a large extent and do not impair its safety function. However, we recommend comparing with our compatibility list, which is continuously updated and can be requested on demand.

3.2 Response range

In case of parallel and centric alignment of the sensing faces of safety switch and actuating element, the following values apply. If the sensing faces are inclined at an angle of up to 30° to each other, deviations by $\pm 10 \%$ from the standard values occur.

3.3 LEDs

The status of the SIDENT/IV (actuated/non-actuated) and possible error situations can be derived from the LED indication.
Some possibilities are represented below (version with 4 positions):

Situation	LED CH 1	LED CH 2	LED Error	LED A3.1	LED A3.2	LED A3.3	LED A3.4
Normal operation							
Sensor actuated with safe position	on	on	off	on	off	off	off
position 2	off	off	on	off	on	off	off
position 3	off	off	on	off	off	on	off
position 4	off	off	on	off	off	off	on
Sensor non-actuated	off	off	on	off	off	off	off
Hysteresis zone of the correspon. actuator	on	on	is flashing	on	on	on	on
Error situation (corresponding actuator in the response range)							
Channel 1 defective	off	on	on	off	off	off	off
Channel 2 defective	on	off	on	off	off	off	off
Short circuit Ch. 1*	is flashing	is flashing	on	off	off	off	off
Short circuit Ch. 2^{*}	is flashing	is flashing	on	off	off	off	off
Short circuit A3.1*	on	on	off	is flashing	off	off	off
Short circuit A3.2*	off	off	off	off	is flashing	off	off
Short circuit A3.3*	off	off	off	off	off	is flashing	off
Short circuit A3.4*	off	off	off	off	off	off	is flashing

* against power supply (L-)

Signal sequence SIDENT/IV, Ref. no. 13.14-47
for 4 positions without storage behaviour

Signal sequence SIDENT/IV, Ref. no. 13.14-47-201
for 4 positions with storage behaviour

Signal sequence SIDENT/IV, Ref. no. 13.14-47-100
for 5 positions without storage behaviour

Signal sequence SIDENT/IV, Ref. no. 13.14-47-202
for 2 safe positions and storage behaviour

4. Technical data

General Technical Data	
Switching distance, hysteresis	20 mm*, < 15\%
Assured switching off distance	35 mm
Design, housing material	cube $40 \times 40 \times 114 \mathrm{~mm}, \mathrm{KS}$
Installation	non-flush
Wiring	plug, 12-poles
Max. permitted lead length	300 m , with/without shield
Ambient temperature range	$-30 \ldots+70^{\circ} \mathrm{C}$
Protection rating, weight	IP 67, 300 g
Protective insulation 回	Prot. class II conform IEC 947
Technical Data of Safety-Related Part	
Wiring diagram	
Identification	by a 6-digit numeric code
Control category	4 conform to EN 13849-1
Configuration	2-channel, reciprocal monitoring
Operating voltage range L+	15... $24 \ldots 30$ VDC
Current consumption	< 90 mA
Operating mode	2 NO
Input voltage L1, L2	12 ... 24 ... 30 VDC, clockable
Output voltage A1, A2	$\begin{aligned} & \min . \mathrm{U}_{\mathrm{L} 1,2}-3 \mathrm{~V}(400 \mathrm{~mA}) ; \\ & \text { typ. } \mathrm{U}_{\mathrm{L}, 2}-1.75 \mathrm{~V}(100 \mathrm{~mA}) \end{aligned}$
Output current	$<400 \mathrm{~mA}$ per output
Actuating time	$>150 \mathrm{~ms}$, typ. 185 ms
Drop-out time	$>75 \mathrm{~ms}$, typ. 100 ms
Switch-on delay	approx. 2 s
Max. operating frequency	1 Hz
Indicators	$2 \times$ identification (green), $1 \times$ fault (red)
Rev. polarity, short circuit prot.	installed

Technical Data for Position Recognition	
Ref. no.	13.14-47-201, 13.14-47-202
Wiring diagram	
Operating voltage range L3+	$15 . . .24$.. 30 VDC
Current consumption	< 45 mA
Operating mode	4 NO
Output voltage A3.1 ... A3.4	typ. U $\mathrm{U}_{\text {L3 }}-1.75 \mathrm{~V}$ (100 mA)
Output current	< 400 mA per output
Actuating time	typ. 10 ms
Drop-out time (pulse prolong.)	typ. 200 ms
Storage behaviour	when A3.2 + A3.3
Switch-on delay	approx. 1 s
Moving speed	max. $1 \mathrm{~m} / \mathrm{s}$
Indicators	$4 \times$ position (green)
Rev. polarity, short circuit prot.	installed

Table: pinning diagram

Pin number	Function	Wire colour
3	L+	green
2	L1	brown
1	A1	white
4	L2	yellow
5	L-	grey
7	L3+	pink
8	A3.1	blue
9	A3.2	red
10	A3.3	black
12	A3.4	violet
	L3-	grey/pink

* Note

- When mounting actuating elements in metallic environment, switching distances may change. Therefore it is strongly recommended to contact the producer.

Designation	Actuating Element	Actuating Element
Type	SIDENT/B-22fv20-401	SIDENT/B-11fs14-401
Ref. no.	13.14-30	13.14-40
Index no. safety position and pos. 1	-001, yellow	-001, yellow
Index no. safety position (spare part)	-002, yellow	-002, yellow
Index no. position 1(for 13.14-47-100 only)	-012, grey	-012, grey
Index no. position 2	-022, blue	-022, blue
Index no. position 3	-032, green	-032, green
Index no. position 4	-042, red	-042, red
Design, housing material	Cube $22 \times 22 \times 20 \mathrm{~mm}$, KS	Cylinder $\varnothing 10.8 \mathrm{~mm}$, Crastin
Installation	non-flush; mounting preferably with one-way screws or by gluing	
Protection rating, weight	IP 67, 13 g	IP 67, 2 g
Protective insulation $\square^{\text {a }}$	Prot. class II conform IEC 947	
Dimensions		
Identification	by a 6-digit numeric code	
Control category	4 conform to EN 13849-1	
Configuration	Transponder	
Ambient temperature range	$-30 \ldots+70{ }^{\circ} \mathrm{C}$	

Designation	Actuating Element	Actuating Element
Type	SIDENT/B-10fs25-401	SIDENT/B-6fs12-401
Ref. no.	13.14-64	13.14-66
Index no. safety position and pos. 1	-001, yellow	-001
Index no. safety position (spare part)	-002, yellow	-002
Index no. position1 (for 13.14-47-100 only)	-012, grey	-012
Index no. position 2	-022, blue	-022
Index no. position 3	-032, green	-032
Index no. position 4	-042, red	-042
Design, housing material	$25 \times 10 \times 3 \mathrm{~mm}, \mathrm{KS}$	$12.1 \times 5.9 \times 3 \mathrm{~mm}, \mathrm{KS}$
Installation	non-flush; undoable fastening by screws or by glue in order to guarantee manipulation safety	
Protection rating, weight	IP 67, 1 g	IP 67, 0.8 g
Protective insulation ${ }^{\text {a }}$	Prot. class II conform IEC 947	
Dimensions	thickness 3 mm	thickness 3 mm
Identification	by a 6-digit numeric code	
Control category	4 conform to EN 13849-1	
Configuration	Transponder	
Ambient temperature range	$-30 \ldots+70^{\circ} \mathrm{C}$	

Installation Instructions

When the actuating elements are installed in a metallic environment, e.g. in lamellas of roller gates, the switching distance may be reduced. Metal lamellas must therefore be slit within the transponder range. When the actuating elements SIDENT/B-10fs25-4O1 are used, the lamellas must be treated as shown in the diagram. Doing this, the metal-free range has to be observed. The same applies to the actuating elements SIDENT/B-6fs12-4O1.

The mounting in the lamella should take place with a flush rivet or similar device. For this, the holder of the transponder in the rear part can be perforated (see diagram).

Mounting example:

SIDENT/B-10fs25-4O1

5. Accessories

Designation	Connecting lead		Connecting lead
Type	VLG 12E/12/X-2		VLG 12E/12/X-3
Ref. no.	20.18-52		20.18-55
Housing material	Metal		
Protection rating	IP 67		
Protective insulation ${ }^{\text {a }}$	Prot. class II conform to IEC 947		
Dimensions			
Connector diagram			
Connection	1: white 7: blue 2: brown 8: red 3: green 9: black 4: yellow 10: violet 5: grey 11: grey/pink 6: pink 12: red/blue		
Ambient temperature range	$-30 \ldots+70^{\circ} \mathrm{C}$		
Cross section	$12 \times 0.5 \mathrm{~mm}^{2}$		
Wiring	Socket, 12-pole		
Contact connection	Solder contacts		

Designation	Connector	Connector
Type	JKYIrZ-O-1	JKYlaZ-0-2
Ref. no.	13.99-46	13.99-48
Housing material	Metal	
Protection rating	IP 67	
Protective insulation 回	Prot. class II conform to IEC 947	
Dimensions		
Connector diagram		
Ambient temperature range	$-30 \ldots+70{ }^{\circ} \mathrm{C}$	
Wiring	Socket, 12-pole	
Contact connection	Crimp contacts	

6. Proper Use

The purpose of the SIDENT/IV safety switch is to monitor mobile, separating safety devices. These are intended to ensure that dangerous work carried out on or with a machine or plant can only be executed when the safety device is closed.

The SIDENT/IV safety switch can accomplish its task only if it is employed, wired and installed according to the instructions of the manufacturer. In all other respects the relevant requirements and regulations must be kept.

These are inter alia:

- EN 13849-1 - safety-related parts of control devices,
- EN 1088 - locking devices in connection with separating safety devices,
- EN 60204-1 - electrical equipment of machines,
- EN 60947-5-3 - requirements for proximity switches with a defined action under fault conditions.

It is required to carry out a risk evaluation for the machine or plant itself based on the following standards:

- EN 13849-1 - safety-related parts of control devices,
- EN 14121 - safety of machines, risk evaluation.

The described product was developed, produced, inspected and documented under consideration of the relevant safety standards. If you observe the handling regulations and safety instructions concerning projecting, installation, proper use, and maintenance as described in this manual, the SIDENT, in the normal case, neither cause personal injury nor damage to property.

7. Dimensions

8. Order Data

8.1 Safety Switches for multiple positions

SIDENT/IV-40fv-1111ZI1D
Ref. no. 13.14-47 for four positions,

SIDENT/IV-4Ofv-1111ZI1D
Ref. no. 13.14-47-100
for five independent positions
SIDENT/IV-40fv-1111ZI1D
Ref. no. 13.14-47-201
for four positions,
with storage behaviour
SIDENT/IV-4Ofv-1111ZI1D
Ref. no. 13.14-47-202
for four positions,
with 2 safe positions
and storage behaviour

8.2 Actuating Elements

8.2.1 Actuating Elements in cubic housing

SIDENT/B-22fv20-401
Ref. no. 13.14-30-001
for safety-related position
and position 1
SIDENT/B-22fv20-4O1
Ref. no. 13.14-30-002
for safety-related position (spare part)

SIDENT/B-22fv20-401
Ref. no. 13.14-30-012
for position 1 (for 13.14-47-100 only)
(grey)
SIDENT/B-22fv20-4O1
Ref. no. 13.14-30-022
for position 2
(blue)
SIDENT/B-22fv20-4O1
Ref. no. 13.14-30-032
(green)
Ref. no. 13.14-30-042
SIDENT/B-22fv20-401
(red)

8.2.2 Actuating Elements of minimal size in cylindrical housing

SIDENT/B-11fs14-401
Ref. no. 13.14-40-001
for safety-related position (yellow)

and position 1

SIDENT/B-11fs14-401
Ref. no. 13.14-40-002
for safety-related position (spare part)
(yellow)

SIDENT/B-11fs14-401
Ref. no. 13.14-40-012
for position 1 (for 13.14-47-100 only)
(grey)
SIDENT/B-11fs14-401
Ref. no. 13.14-40-022
for position 2
(blue)
SIDENT/B-11fs14-401
for position 3
SIDENT/B-11fs14-401
(green)
Ref. no. 13.14-40-042
for position 4

SIDENT/IV
Ref. no. 13.14-47

Safety Switch for the Inquiry of Multiple Positions
(e.g. for Roller/Lift Gates and Windows)

8.2.3. Actuating Elements in fork holder

SIDENT/B-10fs25-401
for safety-related position and position 1

SIDENT/B-10fs25-4O1
for safety-related position (spare part)
SIDENT/B-10fs25-401
for position 1 (for 13.14-47-100 only)
Ref. no. 13.14-64-012
(grey)
SIDENT/B-10fs25-401
Ref. no. 13.14-64-022
(blue)
SIDENT/B-10fs25-401
for position 3
Ref. no. 13.14-64-032
(green)
SIDENT/B-10fs25-401
for position 4
Ref. no. 13.14-64-001

Ref. no. 13.14-64-002
(yellow)

8.2.4. Actuating Elements without housing

SIDENT/B-6fs12-401
Ref. no. 13.14-66-001
for safety-related position
and position 1
SIDENT/B-6fs12-4O1
Ref. no. 13.14-66-002
for safety-related position
(spare part)
SIDENT/B-6fs12-401
Ref. no. 13.14-66-012
for position 1 (for 13.14-47-100 only)
SIDENT/B-6fs12-4O1
Ref. no. 13.14-66-022
for position 2
SIDENT/B-6fs12-401
Ref. no. 13.14-66-032
for position 3
SIDENT/B-6fs12-4O1
Ref. no. 13.14-66-042
for position 4

8.3 Connecting Leads for SIDENT

Please indicate lead length X when placing the order
(standard length $\mathrm{X}=5 \mathrm{~m}$).
VLG 12E/12/X-2
Ref. no. 20.18-52
with angled outlet, 12-lines, ($12 \times 0.5 \mathrm{~mm}^{2}$), with Coninvers connector

VLG 12E/12/X-3
Ref. no. 20.18-55
with straight outlet, 12-lines, ($12 \times 0.5 \mathrm{~mm}^{2}$),
with Coninvers connector

8.4 Connector

JKYIrZ-O-1

Ref. no. 13.99-46
Coninvers connector,
coupling, series RC, angled outlet, 12-pole, crimp contacts

JKYIaZ-O-2
Ref. no. 13.99-48

Coninvers connector, coupling, series RC, straight outlet, 12-pole, crimp contacts

8.5 Accessories for Increasing the Manipulation Safety

Self-cutting one-way screw
Ref. no. 92.18-20
Flat head tapping screw, $3.5 \times 32 \mathrm{~mm}$,
one-way slot, stainless steel, for fixing the actuating element SIDENT/B-22fv20-4O1

Self-cutting one way screw

Ref. no. 92.18-21
Flat head tapping screw, $4.8 \times 50 \mathrm{~mm}$, one-way slot, stainless steel, for fixing the safety switch SIDENT on a sheet metal base

One way screw with metrical thread
Ref. no. 92.18-22

Semi-circular head screw, M5 x 35 mm , one-way slot, stainless steel, for fixing the safety switch SIDENT

We are certified according to DIN EN ISO 9001
Subject to changes!

