Ramp/Soak Process/Temperature Controller PF900

PF900

General Description

The PF900 is a powerful ramp/soak controller with a large program storage capacity of 1024 segments (99 patterns with 10 segments each to 10 patterns with 99 segments each). This $1 / 4$ DIN controller offers guaranteed soak for precise, critical temperature control requirements. With a $\pm 0.1 \%$ accuracy, 0.1 sec . sampling time, five digit display, universal input and multi-level PID or segment PID, this instrument is adaptable to a wide range of process applications. Standard features include three mode operation, four digital inputs, four digital output and Wait functions, temperature alarms, and constant slope PV start.
Some of the optional features include analog outputs and digital communications.

Features

效 $\pm 0.1 \%$ high accuracy
\star Five digit display
it Three control modes
\& Large program storage
Heat/Cool PID with autotuning
~ PV start selection

High Intensity Display

All necessary information is visible on the easy-to-read front display.

Large Memory

The PF900 can store up to 1024 segments (99 patterns with 10 segments each to 10 patterns with 99 segments each).

- 32 patterns by 32 segments, yet all patterns are linkable to form a large program)

New control algorithm
 RSS (Ramp Soak Stabilizer)

A newly developed control algorithm designed exclusively for ramp/soak controls improves follow-up performance while simultaneously suppressing overshoot at the transition from ramp to soak.

Two types of signal modes

You can select a pattern mode that works within the pattern or a segment mode that works within the segment.
(Please specify one of the two)

Level-PID or Segment PID
Select the best PID option for your application. The set values are stored in 8 stage levels or in 8 memory groups.

Ramp/Soak Process/Temperature Controller PF900

Features

Numerous inputs and outputs

Maximum of 3 point program pattern outputs
 (Output program function)

Up to 3 analog outputs can be used to control three types of devices (such as a motorized valve).
Combining time signal outputs allows programming for complex applications.

Memory group

Set values of P, I, D, event, segment wait, time signal, program pattern output can be stored in memory groups and can be called up for a segment to be set.

- PID memory : 8 groups

Setting items:
Proportional band, Integral time, Derivative time, Control response parameter, Cool side proportional band, Cool side integral time, Cool side derivative time, Deadband/overlap, Neutral zone, Manual reset, Output limiter (high/low), Cool side output limiter (high/low), ON/OFF differential gap (high/low), LBA time, LBA headband

- Event memory : 8 groups

Setting items: Event 1 to 4

- Segment wait memory : 8 groups Setting items:
Wait zone, Wait release trigger, Timeout for wait
- Time signals memory : 16 groups

Setting items:
Time signal output destination, starting segment, time signal starting time, end segment, time signal end t

- Program pattern output : Up to 99 points Setting items: Output program 1 to 3

Collaborative program operation
(Inter-controller communication)
Up to 4 slave instruments (FB/RB series and PF900/901) can be connected via exclusive communication port.
Digital communication gives isolated communication without setting error, ratio setting of individual slave controller, memory area selection and Run/Stop switchover.

- Memory area needs to be selected on FB series.
- If you use FB400, FB900 or PF900 for a slave device, please select Communication 1.

Communication protocol among slave devices is Modbus.

- Models available as a master device

PF900/PF901 : Suffix codes for communication : W, X, or Y

- Models available as a slave device

FB100. Optional codes : E, F, H, or J
RB100/RB400/RB500/RB700/RB900 : Suffix codes for communication : 5, 6, B or C PF900/901 : Suffix codes for communication : 5 or X

Easy data management Front loader interface

The PF900 comes with a front loader port and programming tool making complicated programming visual and simple to place on a PC. Downloading or Uploading large numbers of set values can be achieved with ease.

PV Start

There are four types of PV start available on the PF900.
When ramp/soak control is started:
PV start 1: Time of segment 1 is not changed whatever the PV setting.
PV start 2: Time of segment 1 will be shortened to keep the slope of segment 1.
PV start 3: PF900 will search pattern for value that is the same as PV and go to that part of the pattern. Control status will be at Hold until operator presses Run key to start pattern from that point.
PV start 4: PF900 will search pattern for value that is the same as PV and go to that part of the pattern. Control status will be at Run and the instrument will start pattern from that point.

Ramp/Soak Process/Temperature Controller PF900

Specifications

Input

Input

Universal input
a) Temperature, Current, Low voltage input group Thermocouple : K, J, R, S, B, E, T, N (JIS/IEC), PLII (NBS), W5Re/W26Re (ASTM), U, L (DIN) Pt40\%Rh-Pt20\%Rh

- Influence of external resistance : Approx. $0.2 \mu \mathrm{~V} / \Omega$ - Input break action : Up-scale / Down-scale (Selectable) RTD : Pt100 (JIS/IEC), JPt100 (JIS)
-Influence of input lead resistance : Approx. 0.01[\%/ Ω] of reading - Maximum 10Ω per wire - Input break action : Up-scale

Low voltage : 0 to 1 V DC, 0 to 100 mV DC, 0 to 10 mV DC, -1 to 1 V DC. -100 to +100 mV DC, -10 to +10 mV DC - Input break action : Up-scale / Down-scale (Selectable)
b) High voltage input group

High voltage : 0 to 5V DC, 1 to 5V DC, 0 to 10V DC

$$
-5 \text { to }+5 \mathrm{~V} \text { DC, }-10 \text { to }+10 \mathrm{~V} \text { DC }
$$

- Input break action : Uncertain (indicates a value around $0 V$)
c) Current : 4 to 20 mA DC, 0 to 20 mA DC - Input break action: Uncertain (indicates a value around OmA)

Sampling Time
 0.1 sec

- 0.05 sec or 0.25 sec is available.

Input Digital Filter
0.1 to 100.0 sec (OFF when 0 is set.)

PV Bias
-span to +span
PV Ratio
0.001 to 9.999

Square Root Extraction
Equation : PV = Ö (Input value x PV ratio + PV bias)
Low level cut OFF : 0.00 to 25.00% of span

Performance

Measuring Accuracy

a) Thermocouple

Type : K, J, T, E, N, PLII, U, L
Less than $-100^{\circ} \mathrm{C}\left(-148^{\circ} \mathrm{F}\right): \pm 1.0^{\circ} \mathrm{C}\left(\pm 1.8^{\circ} \mathrm{F}\right)$
-100 to $500^{\circ} \mathrm{C}\left(-148\right.$ to $\left.932^{\circ} \mathrm{F}\right): \pm 0.5^{\circ} \mathrm{C}\left(\pm 0.9^{\circ} \mathrm{F}\right)$
More than $500^{\circ} \mathrm{C}\left(932^{\circ} \mathrm{F}\right)$: $\pm 0.1 \%$ of Reading
Type: N, S, R, W5Re/W26Re
Less than $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right): \pm 2.0^{\circ} \mathrm{C}\left(\pm 3.6^{\circ} \mathrm{F}\right)$ 0 to $1000^{\circ} \mathrm{C}\left(32\right.$ to $\left.1832^{\circ} \mathrm{F}\right): \pm 1.0^{\circ} \mathrm{C}\left(\pm 1.8^{\circ} \mathrm{F}\right)$ More than $1000^{\circ} \mathrm{C}\left(1832^{\circ} \mathrm{F}\right): \pm 0.1 \%$ of Reading Type: B

Less than $400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right): \pm 70.0^{\circ} \mathrm{C}\left(\pm 126^{\circ} \mathrm{F}\right)$
400 to $1000^{\circ} \mathrm{C}\left(752\right.$ to $\left.1832^{\circ} \mathrm{F}\right): \pm 1.4^{\circ} \mathrm{C}\left(\pm 2.6^{\circ} \mathrm{F}\right)$
More than $1000^{\circ} \mathrm{C}\left(1832^{\circ} \mathrm{F}\right): \pm 0.1 \%$ of Reading
Type : PR40-20 (Pt40\%Rh-Pt20\%Rh)
Less than $400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right): \pm 20^{\circ} \mathrm{C}\left(\pm 36^{\circ} \mathrm{F}\right)$
400 to $1000^{\circ} \mathrm{C}\left(752\right.$ to $\left.1832^{\circ} \mathrm{F}\right): \pm 10^{\circ} \mathrm{C}\left(\pm 18^{\circ} \mathrm{F}\right)$
More than $1000^{\circ} \mathrm{C}\left(1832^{\circ} \mathrm{F}\right): \pm 0.1 \%$ of Reading
Cold junction temperature compensation error
$\pm 1.0^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ [at 5 to $40^{\circ} \mathrm{C}\left(41\right.$ to $\left.\left.104^{\circ} \mathrm{F}\right)\right]$
Within $\pm 1.5^{\circ} \mathrm{C}\left(\pm 2.7^{\circ} \mathrm{F}\right)$
[Between -10 and $5^{\circ} \mathrm{C}\left(16\right.$ to $\left.41^{\circ} \mathrm{F}\right), 40$ and $55^{\circ} \mathrm{C}\left(104\right.$ to $\left.122^{\circ} \mathrm{F}\right)$]
b) RTD

Less than $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$: $\pm 0.2^{\circ} \mathrm{C}\left(\pm 0.4^{\circ} \mathrm{F}\right)$
More than $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right): \pm 0.1 \%$ of Reading
c) DC voltage and DC current
$\pm 0.1 \%$ of span
Insulation Resistance
More than $20 \mathrm{M} \Omega$ (500V DC) between input terminals and ground More than $20 \mathrm{M} \Omega$ (500V DC) between power terminals and ground

Dielectric Strength

1500 V AC for one minute between input terminals and ground
1500 V AC for one minute between power terminals and ground
Control

Control Method

a) Brilliant II PID control

- Available for reverse and direct action.
b) Brilliant PID control (Heat/Cool type)
c) Position proportioning control
- Available for reverse and direct action.
- Position proportional control can be used with/without FBR
(feedback resistance) input.
-a), b), c) is selectable.

Autotuning Method

a) For PID control or position proportioning control
b) For Heat/Cool PID control (For extruder, air cooling type)
c) For Heat/Cool PID control (For extruder, water cooling type) d) For Heat/Cool PID control

Autotuning with auto soak detect

This is a function to search program soak areas and perform autotuning in the order of segments at the time of reset

- This feature is enabled/disabled for ramp segment.

Major Setting Range

Set value
Same as input range.
Proportional band : $0(0.0 / 0.00)$ to input span $\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right)$ (for temperature input)
0.0 to 1000.0% of input span (for voltage/current input)
(ON/OFF control when $\mathrm{P}=0$)
Differential gap at ON/OFF control
(High/Low individual setting)
Temperature input : $0(0.0 / 0.00)$ to input span (${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$)
Voltage/Current input : 0.0 to 100.0\% of input span
Integral time :
0 (0.0) to 3600 (3600.0)sec. (selectable)
(PD control when $\mathrm{I}=0$)
Derivative time : $0(0.0)$ to $3600(3600.0)$ sec. (selectable)
(PI control when $\mathrm{D}=0$)
Cool-side proportional band :
1 (0.1/0.01) to input span $\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right)$ (for temperature input)
0.1 to 1000.0% of input span (for voltage/current input)

Cool-side integral time :
0 (0.0) to 3600 (3600.0)sec. (selectable)
(PD control when $\mathrm{I}=0$)
Cool-side derivative time
0 (0.0) to 3600 (3600.0)sec. (selectable)
(PI control when $\mathrm{D}=0$)
Deadband/Overlap :
-span to +span (Temperature input)
-100.0 to $+100.0 \%$ of span (Voltage, Current input)
Control response : Slow, Medium, Fast
Output limiter: $\quad-5.0$ to $+105.0 \%$ (High/Low individual setting)
Cool-side output limiter :
-5.0 to $+105.0 \%$ (High/Low individual setting)
Proportional cycle time :
0.1 to 100.0 sec .

Cool-side proportional cycle time :
0.1 to 100.0 sec

Manual reset : $\quad-100.0$ to $+100.0 \%$ of proportional band
Output at reset : $\quad-5.0$ to $+105.0 \%$ (Heat and cool sides are individual setting.)
Overlap/deadband reference :
0.0 to 1.0 (heating reference at zero)

Undershoot suppression factor (USS) for cooling :
0.000 to 1.000

Ramp/soak stabilizer (RSS) :
0.0 to 1.0

- Selectable from enabled/disabled.

Level-PID a) Number of levels: 8 levels (PID groups 1 to 8)
b) Level setting range:

Low limit of input range to high limit of input range (level settings 1 to 7)
Motor Valve Control (position proportioning control type only)
Motor time: 5 to 1000 sec . (full open to full close)
Integral output limiter :
OFF, 0.1 to 200.0% of control motor time
Neutral zone : $\quad 0.1$ to 20.0%
Differential gap : 50\% of neutral zone (Fixed)
Valve action at RESET state :
a) CLOSE : OFF, OPEN : OFF
b) CLOSE : ON, OPEN : OFF
c) CLOSE : OFF, OPEN : ON
\cdot a), b), c) is selectable.
Program
Time Accuracy : $\quad \pm 0.01 \%$ of reading or input sampling time
(Whichever is larger)
Storage Program Pattern : Max. 99 patterns
Storage Segments: Max. 1024 segments

- Up to 99 segments per pattern.
- Supplied with hold, step, fast forward, fast
rewind features
Time Setting : $\quad 0 \mathrm{hr} 0 \mathrm{~min}$ to 500 hs 00 min
or 0 min 0 sec to 500 min 0 sec
Segment Repeat :
1 to 9999 repeats
- Repeat is disabled when set to 1

1 to 10000 repeats
Linkable Patterns :

- No pattern link
men to zero
Pattern End Output Time :0 hr 0 min to 500 hs 00 min
or 0 min 0 sec to 500 min 0 sec
- Output remains on when set to zero.

Time Signal Memory group Number
0 to 16

- No assigned groups when set to zero.

Program Starting Mode

a) Starts from a desired value (SV after reset)
b) Starts from a desired measured input (Time fixed)
c) Starts from a desired measured input (Time shortened)
c) Starts from a desired measured input (Time shortened) from there. (HOLD status when started)
e) Intersection of measurement input and pattern is searched and starts from there. (RUN status when started)

Ramp/Soak Process/Temperature Controller PF900

WAIT Status at The Time of Program Star

WAIT condition memory number : 0~8

- No WAIT when set to zero.
- Selectable from release by wait zone, contact input (trigger), and timeout.

WAIT Function :

a) Wait zone (upper)

1) Temperature input: $0(0.0 / 0.00)$ to $200(200.0 / 200.00)\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right)$
2) Voltage/current input: 0.0 to 20.0% of input span

- Wait function off when set to zero
b) Wait zone (lower)

1) Temperature input: -200(-200.0) $0(0.0)\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right)$ or $-199.99 \sim 0.00\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right)$
2) Voltage/current input: $20.0 \sim 0.0 \%$ of input span

- Wait function off when set to zero
c) Wait timeout
(Time counting resumes unconditionally after the set time has elapsed)
0 hr 0 min to 500 hs 00 min or 0 min 0 sec to 500 min 0 sec
- Function is disabled when set to zero.

Pattern End Output :

- DO can be assigned (turns on for 0.5 second for each pattern repeat.

Time Signal Output :

Time signal or segment signal, whichever is specified.
a) Time signal

1) Number of outputs: 8 (TS1 to TS8)
2) Output assignment: Up to 12 (including 4 relays), assignable by DO
3) Time signal memory group: 16 groups
4) Number of memory storage: 16 groups $X 16$ memories
5) Number of storage memory: 1 to segment No. ($\max =99$)
6) Starting time: 0 hr 0 min to 500 hs 00 min or

0 min 0 sec to 500 min 0 sec
7) Ending segment:

1 to segment No. (max = 99), however, ending segment must be equal to or larger than the starting segment
8) Ending time: 0 hr 0 min to 500 hs 00 min or

0 min 0 sec to 500 min 0 sec
b) Segment signal:

TS1 to TS8 can be independently turned ON and OFF at each segment.
Programmed Preset Manual Output (Output program Function) Fixed value is produced at each segment.
The function is activated by assigning outputs 1 to 3 to the program output.
a) Number of output program patterns:

1 to (128/max. segments number)
For example, in case of 99 segments, it is "1"

- Max. segment No.: Number of segments by number of patterns multiplied by number of segments.
b) Setting items: Output program 1 to $3:-5.0$ to $+105.0 \%$
(Independently adjustable).

Other Features

Pattern/segment copy function, tag name edit function (for each pattern), data clear (to initial state), remaining time display of pattern.

Memory Group

PID Memory

a) Memory group No : 0 to 8 (Level-PID is activated when set to zero.) b) Setting items:

Proportional band, Integral time, Derivative time, Control response parameter, Cool side proportional band, Cool side integral time, Cool side derivative time, Deadband/overlap, Neutral zone, Manual reset, Output limiter (high/low), Cool side output limiter (high/low), ON/OFF differential gap (high/low), LBA time, LBA headband

Event Memory

a) Memory group No.: 0 to 8 (event off when set to zero)
b) Setting items: Event 1 to 4

Segment Wait Memory

a) Memory group No.: 0 to 8 (wait off when set to zero)
b) Setting items: wait zone, wait release trigger, timeout for wait

Time Signal Memory

a) Memory group No.: 0 to 16 (time signal off when set to zero)
b) Memory No. : 1~16 (16 set points per group)
c) Setting items: Time signal output destination, starting segment, time signal starting time, end segment, time signal end time

Program pattern output

a) Pattern Nos.: 1 to (128/max.segment) . Up to 99 segments
b) Segment No.: 1 to max segment value.
c) Setting items: Output program 1 to 3

Mode Selection

Operation Mode
Reset (RESET), program (RUN), fixed setpoint control (FIX), and manual control (MAN)
Action when operation mode is selected.

Mode transfer		After transfer			
		Reset mode	Program control	Fixed setpoint	Manual control
	Reset mode		Control continues with the calculated value of the control.		Control starts with the control output at reset as the manual setpoint.
	Program control mode	Provide control output at the time of reset		Control continues with the SV for a fixed setpoint control.	Output continues after adjusting the final output level of the program control to the output level of manual.
	Fixed setpoint control				Output continues after adjusting the final output level of the fixed setpoint control to the output level of manual.
	Manual control		Control continu transfer to man	es after bumpless ual output	

*1 Program status is retained unless the instrument is reset. If program control is selected, contro
starts from the retained status.

- Output may result in a bump in spite of a bumpless transfer action if the selected control mode is P action, PD action, or ON/OFF action.

Output (OUT)

Number of Main Output
Up to 3 points (OUT1 to OUT3)

Output Function

Control output (MV), Output program, Retransmission output. OUT2 and OUT3 can be used as event outputs.

- See output assignment table for details.

Output Type

Relay output:
Voltage pulse output :

Current output :
Continuous voltage output

SSR (Triac) output :
Open collector output :
(Sink type)
Form A contact, 250V AC 3A (resistive load) 0/12V DC
(Load resistance : More than $600 \Omega, 20 \mathrm{~mA}$ or less)

* OUT1 can be more than 300Ω (40 mA or less)
if OUT2 is not used
4 to 20 mA DC, 0 to 20 mA DC
(Load resistance: Less than 600 ${ }^{\text {) }}$
0 to 5V DC, 1 to 5V DC, 0 to 10V DC
0 to 1V DC (Assignable to OUT3 only)
(Load resistance : More than $1 \mathrm{k} \Omega$)
Rated current : 0.5A
Load voltage : Less than 30V DC,
Maximum load current: Less than 100 mA
ON voltage: Less than 2V DC (at 100mA)

Digital Output

Number of Output
Up to 12 points (DO1up to 12 (DO1 to 12)
DO1 to 4 : Relay contact output (Standards)
DO5 to 12 : Open collector output (Optional)

Output Items

Time signal, event, Heater break alarm, Loop break alarm, Input abnormality, RUN state, FIX mode state, MAN mode status, Ramp status, Soak status, HOLD status, WAIT status, Pattern end status, AT status, FAIL, Communication failure, FBR input abnormality

Output Type

a) Relay contact output, Form 1a contact, 250VAC 1A (Resistive load)
b) Open collector output (sink type), Load voltage: 30V DC or less Allowable load current : 100 mA
ON voltage : 2 V or less (For maximum load current)
Event (Alarm)
Number of Event Setting Up to 4 points (Event 1 to 4)

Event type

Process, Deviation, Band, SV, MV
Setting range
Deviation :

- (Input span) to + (input span)

Differential gap : 0 to input span
Process, Set value
MV value :
Same as input range
Differential gap : 0 to input span
5.0 to $+105.0 \%$

Differential gap : -5.0 to $+105.0 \%$

Output

Freely assignable to digital outputs (DO1 to 12, OUT2, OUT3).
See Output allocation table for details

Ramp/Soak Process/Temperature Controller PF900

Specifications

Other Functions

a) Hold function (Valid when power is supplied or when even is started.)
b) Event action selection at the time of abnormal input.
c) Action selection at the time of RESET
d) Delay timer: 0.0 to 600.0 sec.
e) Event minimum ON and OFF time : 0.0 to 600.0 sec
(ON/OFF individual setting)
f) Interlock : Without/With/Switches into the manual mode and stops control.
Heater break alarm (HBA)
a) Number of CT input: 2 points (1 for each CT input)
b) Input function: Current detector (CT)
c) Input range: CTL-6-P-N: 0 to 30A

CTL-12-S56-10L-N: 0 to 100A
d) Heater current display range:0.0 to100.0A
e) Heater current display accuracy: $\pm 5 \%$ of input value or $\pm 2 \mathrm{~A}$
f) Interlock: Without/With/Switches into the manual mode and stops control.
g) Output method: Freely assignable to digital outputs
h) Action selection at reset status

- Heater break alarm (HBA) is not available for current/continuous voltage output.

Loop break alarm (LBA)
a) LBA time: 0 to 7200 sec . (OFF when set to zero)
b) LBD setting: 0 to input span
c) Interlock : Without/With/Switches into the manual mode and stops control.
d) Output method: Freely assignable to digital outputs See output assignment table.

- Loop break alarm (LBA) is not available for heat/cool PID control type.

Analog Retransmission Output

(Optional)

Number of Outputs

Up to 2 points (3 for program outputs)

- Depends on output assignment.

Output types
Measured value (PV), Deviation (DEV), Set value (SV), Manipulated output value (MV), Output program value, \% of segment time (Selectable)

Output Signal

Current output :
4 to 20 mA DC, 0 to 20 mA DC
(Load resistance : Less than 600Ω)
Continuous voltage output: 0 to 1 V DC, 0 to 5V DC, 1 to 5V DC, 0 to 10V DC (Load resistance : More than $1 \mathrm{k} \Omega$)

Scaling Range

a) PV, SV : Same as input range
b) Control output, Output program output: 0 to 100%
c) Deviation: \pm input span

Output program and segment time percentage are fixed.

Additional Function

Stop/continue selectable during RESET status

Digital Input

(DI 1 to 6 : Optional, DI 7 to 11 : Standard)

Number of Inputs

Up to 11 points (DI 1 to 6, DI 7 to 11)

Input Rating

Non-voltage contact input

Functions

DI1 to DI6 : Pattern No. selection + Pattern set, WAIT release
DI7 to DI11 : Pattern No selection + Pattern set,
Mode selection (RESET, RUN), Direct/Reverse action selection
Refer to Digital Input table for details.

Communication

(Optional)
[COM1]

Communication method :	RS-485, RS-232C, RS-422A
Communication speed :	2400, 9600, 19200, 38400, 57600 bps - Selectable
Protocol :	RKC standard (ANSI X3.28 2.5 A4) MODBUS RTU - Selectable
Bit format	
Start bit :	1
Data bit :	7 or $8 \cdot$ For MODBUS 8 bit only
Parity bit :	Without, Odd or Even
Stop bit :	1 or 2
Maximum connection :	RS-485/RS-422A : 32 units (Including host) RS-232C : 1 unit

Inter-Controller
Communication
(Optional) [COм2]

Communication type :	Function to send target value to slave controllers
Communication method :	RS-485
Communication speed :	$9600,19200,38400 \mathrm{bps}$ • Selectable
Protocol :	MODBUS RTU
Bit format :	Start bit : 1, Data bit : 8
	Parity bit : Without, Stop bit : 1
Maximum slaves :	4 units
Maximum slaves :	PF900/PF901/FB series (With memory area)
	RB series (Without memory area)

Loader Communication

[COM2]
Communication method: RS-485
Communication speed : 38400 bps
Protocol :
Bit format :
Connection method :
RKC standard (ANSI X3.28 2.5 A4)
Start bit : 1, Data bit : 8
Parity bit : Without, Stop bit : 1
Front: Connected to COM-K with an exclusive cable (W-BV-03-1500)

- Front loader interface is available only while instrument is powered.

Feedback Resistance (FBR) Input

Resistance value

Standard : 100 to $10 \mathrm{k} \Omega$ (factory default 135Ω)
Sampling time
0.1 sec (with measuring input sampling time of 0.05 sec)
0.2 sec (with measuring input sampling time of 0.1 sec)
0.5 sec (with measuring input sampling time of 0.25 sec)

- Position proportional control can be used with/without FBR (feedback resistance) input.

General Specifications

Supply Voltage

a) 85 to 264 V AC (Including supply voltage variation) [Rating : 100 to 240 V AC] ($50 / 60 \mathrm{~Hz}$ selectable)
b) 20.4 to 26.4 V AC (Including supply voltage variation)
[Rating : 24 V AC] ($50 / 60 \mathrm{~Hz}$ selectable)
c) 20.4 to 26.4 V DC (Ripple rate 10% p-p or less) [Rating:24VDC]

Power Consumption

a) 100 to $240 \mathrm{~V} \mathrm{AC}: 13.5 \mathrm{VA}<10.9 \mathrm{VA}>$ (at 240 V AC),
b) $24 \mathrm{VAC} \quad 9.5 \mathrm{VA}<7.1 \mathrm{VA}>$ (at 100 V AC)
b) $24 \mathrm{~V} \mathrm{AC}: \quad 8.5 \mathrm{VA}<6.2 \mathrm{VA}>$
c) $24 \mathrm{VDC}: \quad 230 \mathrm{~mA}<173 \mathrm{~mA}>$
< > : Power saving mode

Rush Current

a) 100 to 240 V AC : Less than 17.5 A (at 240 V AC),
b) $24 \mathrm{~V} \mathrm{AC}: \quad$ Less than 8.5 A
c) 24 V DC: Less than 6.0 A

Power Failure Effect

A power failure of 20 m sec or less will not affect the control action.
If power failure of more than 20 m sec occurs, controller will restart with the state of HOT start 1, HOT start 2 or COLD start (selectable)

Power Saving Mode

If any key is not pressed during the user set time period, the backlight LED is turned off except PV and ALM displays.
Setting time: 0 to 60 min (0 for no power saving mode)

- Back to normal display if any key is pressed during the power saving mode.
Waterproof/Dustproof: NEMA type 3 : IP55
(When mounted in a panel, front direction)
Operating Environments : -10 to $55^{\circ} \mathrm{C}\left[14\right.$ to $132^{\circ} \mathrm{F}$]
5 to $95 \% \mathrm{RH}$.
Absolute humidity : MAX. W.C $29.3 \mathrm{~g} / \mathrm{m}^{3}$ dry air at 101.3 kPa .

Memory Backup : Backed up by non-volatile memory (FRAM)

- Data retaining period : Approx. 10 years
- Number of writing : Approx. 10,000,000,000 times. (Depending on storage and operating conditions.)
Net Weight Approx. 470g

Ramp/Soak Process/Temperature Controller PF900

Model and Suffix Code

<Note 1>
If inter-controller communication (master-slave operation) is used,
select code: W, X, or Y (that means "with communication 2") for a master device, and 5 or X (communication 1: RS-485) for a slave device.
*1 For program or retransmission output, specify voltage or current.
For digital output, specify relay or open collector output.
*2 Heater break alarm (HBA) is not available for current/continuous voltage output
Loop break alarm (LBA) is not available for heat/cool PID control type
*3 Position proportional control can be used with/without FBR (feedback resistance) input.

- Control output (OUT1, OUT2) assignment by control action

PID control action:

Control output is produced from OUT1. OUT2 can be used as retransmission output or digita output.
Heat/Cool PID control action:
Heating output is produced from OUT1 and cooling output from OUT2
Position proportioning PID control action: Opening output is produced from OUT1 and closing output from OUT2.

Input range code table

Input	Code	Range	Input	Code	Range	Input	Code	Range	Input	$\begin{array}{\|l\|l\|} \hline \text { Code } \\ \hline \mathrm{D}: 34 \\ \hline \end{array}$	Range		
K	K 135	-200.0 to $+400.0^{\circ} \mathrm{C}$	T	T ! 19	-200.0 to $+400.0^{\circ} \mathrm{C}$	$\begin{aligned} & \text { PLII } \\ & \text { (NBS) } \end{aligned}$	A 06	0.0 to $1390.0^{\circ} \mathrm{C}$	Pt100		-100.00 to $+150.00^{\circ} \mathrm{C}$		
	K 142	-200.0 to $+1372.0^{\circ} \mathrm{C}$		T:13	-200.0 to $+200.0^{\circ} \mathrm{C}$		A 05	0.0 to $1300.0^{\circ} \mathrm{C}$		D 135	-200.	0 to $+850.0^{\circ} \mathrm{C}$	
	K 123	0.0 to $1300.0^{\circ} \mathrm{C}$		T:06	0.0 to $400.0^{\circ} \mathrm{C}$		A 02	0 to $1390^{\circ} \mathrm{C}$		D 121	-200.	0 to $+200.0^{\circ} \mathrm{C}$	
	K 09	0.0 to $400.0^{\circ} \mathrm{C}$		T:16	-200 to $+400^{\circ} \mathrm{C}$		A A7	0.0 to $2534.0^{\circ} \mathrm{F}$		D 125	-200.	0 to $+600.0^{\circ} \mathrm{C}$	
	K 141	-200 to $+1372^{\circ} \mathrm{C}$		T:C2	-328.0 to $+752.0^{\circ} \mathrm{F}$		A : A5	0.0 to $2300.0^{\circ} \mathrm{F}$		D 136	-200	to $+850^{\circ} \mathrm{C}$	
	K 02	0 to $400^{\circ} \mathrm{C}$		T : B7	-300.0 to $+700.0^{\circ} \mathrm{F}$		A A2	0 to $2534^{\circ} \mathrm{F}$		D 1 C9	-328.	0 to $+1562.0^{\circ} \mathrm{F}$	
	K : 06	0 to $1200^{\circ} \mathrm{C}$		T : A7	0.0 to $700.0^{\circ} \mathrm{F}$	WSReN26R	W : 04	0.0 to $2300.0^{\circ} \mathrm{C}$		D 1 B8	-300.	0 to $+1200.0^{\circ} \mathrm{F}$	
	K : C9	-328.0 to $+2502.0^{\circ} \mathrm{F}$		T:C9	-328 to $+752^{\circ} \mathrm{F}$		W : 06	0.0 to $1200.0^{\circ} \mathrm{C}$		D 'D2	-32	8 to $+1562^{\circ} \mathrm{F}$	
	K : B4	0.0 to $+2400.0^{\circ} \mathrm{F}$	S	S:04	0.0 to $1700.0^{\circ} \mathrm{C}$		W : 03	0 to $2300^{\circ} \mathrm{C}$	JPt100	P:29	-100.0	0 to $+150.00^{\circ} \mathrm{C}$	
	K:A4	0.0 to $800.0^{\circ} \mathrm{F}$		S:07	-50.0 to $+1768.0^{\circ} \mathrm{C}$		W : A8	0.0 to $4200.0^{\circ} \mathrm{F}$		P:21	-200.	0 to $+200.0^{\circ} \mathrm{C}$	
	K:C5	-328 to $+2502^{\circ} \mathrm{F}$		S:06	-50 to $+1768^{\circ} \mathrm{C}$		W : A6	0.0 to $2200.0^{\circ} \mathrm{F}$		P:26	-200.	0 to $+600.0^{\circ} \mathrm{C}$	
J	J:27	-200.0 to $+400.0^{\circ} \mathrm{C}$		S : A8	-58.0 to $+3214.0^{\circ} \mathrm{F}$		W:A2	0 to $4200^{\circ} \mathrm{F}$		P:30	-200.	0 to $+640.0^{\circ} \mathrm{C}$	
	J :29	-200.0 to $+1200.0^{\circ} \mathrm{C}$		S:A5	0.0 to $3200.0^{\circ} \mathrm{F}$	$\frac{\mathrm{L}}{(\mathrm{DIN})}$	L 04	0.0 to $900.0^{\circ} \mathrm{C}$		P:10		0 to $500.0^{\circ} \mathrm{C}$	
	J J:16	0.0 to $1200.0^{\circ} \mathrm{C}$		S :A7	-58 to $+3214^{\circ} \mathrm{F}$		L:05	0 to $900^{\circ} \mathrm{C}$		P:31		0 to $+640^{\circ} \mathrm{C}$	
	J 15	-200 to $+1200^{\circ} \mathrm{C}$	R	R R , 05	0.0 to $1700.0^{\circ} \mathrm{C}$		L:A6	0.0 to $1600.0^{\circ} \mathrm{F}$	DC Current • Voltage				
	J : C9	-328.0 to $+2192.0^{\circ} \mathrm{F}$		R:08	-50.0 to $+1768.0^{\circ} \mathrm{C}$		L : B1	0.0 to $1652.0^{\circ} \mathrm{F}$					
	J : B5	0.0 to $2100.0^{\circ} \mathrm{F}$		R:07	-50 to $+1768^{\circ} \mathrm{C}$		L : A3	0 to $1652^{\circ} \mathrm{F}$	Inpu		Code	Range	
	J : B6	0.0 to $800.0^{\circ} \mathrm{F}$		R:A8	-58.0 to $+3214.0^{\circ} \mathrm{F}$	$\underset{(\mathrm{DIN})}{\mathrm{U}}$	U 04	0.0 to $600.0^{\circ} \mathrm{C}$	0 to 1	OmV	1:01	-19999 to +32000 (Programmable) Factory set value: 0.0 to 100.0\%	
	J; B9	-328 to $+2192^{\circ} \mathrm{F}$		R:A5	0.0 to $3200.0^{\circ} \mathrm{F}$		U:08	0 to $600^{\circ} \mathrm{C}$	0 to 1	0 mV	2:01		
E	E:20	-200.0 to $+1000.0^{\circ} \mathrm{C}$		R :A7	-58 to $+3214^{\circ} \mathrm{F}$		U : B1	0.0 to $1100.0^{\circ} \mathrm{F}$	0 to 1		3:01		
	E:17	-200.0 to $+200.0^{\circ} \mathrm{C}$	B	B:04	0.0 to $1800.0^{\circ} \mathrm{C}$		U:B3	0.0 to $1112.0^{\circ} \mathrm{F}$	0 to 5		4:01		
	E:08	0.0 to $1000.0^{\circ} \mathrm{C}$		B:03	0 to $1800^{\circ} \mathrm{C}$		$\mathrm{U}: \mathrm{B} 4$	0 to $1112^{\circ} \mathrm{F}$	0 to 1		5:01		
	E:06	-200 to $+1000^{\circ} \mathrm{C}$		B ${ }^{\text {B }}$ A9	0.0 to $3200.0^{\circ} \mathrm{F}$	PR40-20	F:01	0.0 to $1800.0^{\circ} \mathrm{C}$	1 to 5		6:01		
	E:B3	-328.0 to $+1832.0^{\circ} \mathrm{F}$		B B 3	0.0 to $3272.0^{\circ} \mathrm{F}$		F:02	0 to $1800^{\circ} \mathrm{C}$	0 to 2	mA	7:01		
	E:A6	0.0 to $1800.0^{\circ} \mathrm{F}$			0 to $3272^{\circ} \mathrm{F}$		F:A1	0.0 to $3200.0^{\circ} \mathrm{F}$	4 to 2	OmA	8:01		
	E:B1	-328 to $+1832^{\circ} \mathrm{F}$	N	N:05	0.0 to $1300.0^{\circ} \mathrm{C}$		F : A2	0 to $3200^{\circ} \mathrm{F}$	-100 to +	00 mV	9:01		
				N:02	0 to $1300^{\circ} \mathrm{C}$				-1 to +		9:02		
				$\mathrm{N}: \mathrm{A8}$	0.0 to $2372.0^{\circ} \mathrm{F}$				-10 to +	10 mV	9:03		
				$\mathrm{N}:$ A4	0.0 to $2300.0^{\circ} \mathrm{F}$				-10 to +	10 V	9:04		
				N:A7	0 to $2372{ }^{\circ} \mathrm{F}$				-5 to +		9:05		

Thermocouple
RTD

Output signal code table

[^0]
Ramp/Soak Process/Temperature Controller PF900

Quick Start Code 2

- Quick start code 2 tells the factory to ship with each parameter preset to the values detailed as specified by the customer. Quick start code is not necessarily specified when ordering, unless the preset is requested.
These parameters are software selectable items and can be re-programmed in the field via the manual.

- COM2 is used exclusively for inter-controller communication.
- Default setting value of Digital output type

Digital output 1 : Deviation High
Digital output 2 : Deviation Low with Hold
Digital output 3 : Time signal 1
Digital output 4 : Pattern end output
*1 Heater break alarm (HBA) is not available for current/continuous voltage output.
*2 Loop break alarm (LBA) is not available for heat/cool PID control type.

Event types	Code
No event	N
Deviation High	A
Deviation Low	B
Deviation High/Low (Common high/low setting)	C
Band (Common high/low setting)	D
Deviation High with Hold	E
Deviation Low with Hold	F
Deviation High/Low with Hold (Common high/low setting)	G
Process High	H
Process Low	J
Process High with Hold	K
Process Low with Hold	L
Heater Break Alarm (HBA) 1 *1	P
Heater Break Alarm (HBA) $2{ }^{*} 1$	Q
Loop Break Alarm (LBA) *2	R
FAIL	S
FBR Input Abnormality	T
Band (Individual high and low settings)	U
Set value High	V
Set value Low	W
Deviation High/Low (Individual high and low settings)	X
Deviation High/Low with Alarm Hold (Individual high and low settings)	Y
MV value High	1
MV value Low	2
Cool side MV value High	3
Cool side MV value Low	4
Time signal 1	5
Time signal 2	6
Time signal 3	7
Time signal 4	8
Pattern end output	9

Digital Input allocation table

Code	DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	Pattern No. Selection					Pattern No. Set	RESET	RUN	STEP	HOLD	Pattern No. Selection
1	Pattern No. Selection					Pattern No. Set	RESET	RUN	STEP	Patt	rn No. Selection
2	WAIT release	Pattern No. Selection				Pattern No. Set					
3	WAIT release	Pattern No. Selection									
4	WAIT release	RESET	RUN	STEP	HOLD	Direct/Reverse selection					
5	WAIT release	RESET	RUN	STEP	HOLD	Pattern No. Selection (Increment)					

Example of Model Code and Quick start code

Input: Thermocouple PR40-20, Max. $1800^{\circ} \mathrm{C}$, resolution $0.1^{\circ} \mathrm{C}$ Control: Heating control (Output: 4 to 20 mA DC)
Digital output : 4 points (Relay contact output)
Digital output 1 : Deviation high, Digital output 2 : Pattern end output Digital output 3 : Time signal 1 output, Digital output 4 : Time signal 2 output

Specifications
Retransmission output: 0 to 10 V DC
Time signal output: 8 points (open collector)
Digital input: WAIT release + Pattern No.Selection, (With Pattern No.Set)
Communication: RS-232C (MODBUS) + inter-controller communication

Model code PF900-8N5-ロ*4NW2-FF01

Accessory

- Current transformer for heater break alarm (HBA)

- Terminal Cover

External Dimensions and Rear Terminals

[^0]: *: 0 to 1 V DC output can be specified only for Output 3 (Analog retransmission output),

