DigitroniK ${ }^{\text {TM }}$
 Digital Indicating Controller SDC 31

The DigitroniK SDC 31 is a compact $(96 \times 96 \mathrm{~mm})$, digital indicating controller offering standard PID control and an advanced neural/fuzzy PID that performs process diagnostics and reduces overshoot.
The SDC 31 offers full, multi-range inputs, selectable from the keypad, including thermocouple, resistance temperature detector (RTD), DC voltage and DC current inputs. The SDC 31 provides a comprehensive range of strategies including time proportional PID (relay output, voltage output), current output PID, and position proportional PID. The controller also enhances process visibility with such functions as remote switch input, control parameters, and local set points, which can be easily set using the smart loader.

Features

- High accuracy of $\pm 0.2 \%$ FS.
- Input types and ranges are selectable from the keypad.
- SP1 to SP8 can be selected by the operators.
- 8 groups of PID control constants are provided. Each PID group can be optimized using a range of configurable values.
- Neural/Fuzzy and conventional autotuning allows simultaneous implementation of the rising, disturbance responses, and overshoot prevention characteristics.
- Abnormal operation diagnostics allows automatic changeover of motors to their estimated stop position by detecting abnormal feedback resistance.
- Control loop diagnostics checks the output condition at PV change.

- PV bias and RSP bias can be set.
- The setpoint value ramp function allows setting of the SP change ratio.
- Two event outputs are provided: enabling one with a timer function, and a motor opening event to be set.
- The operation modes are selectable by external switch inputs (local/remote, auto/manual, RUN/READY, selection of 8 local set points, AT start, direct/reverse action timer event start).
- Versatile optional functions support a broad range of applications:
\star Events (2 points) $\quad \star$ Auxiliary output (1 point)
\star Digital input (4 points) \star Communication (RS-485)
- CE marking compliant

Adaptive standards: EN61010-1, EN61326

- Basic Functions Block Diagram
- Standard Model and Remote SP Model

Specifications

Control output	Modutrol motor control system	Any of the following three systems are selectable - Motor feedback provided. (see note 4) - Motor feedback provided (see note 5) -No motor feedback provided.					
		Notes: 4 Control is based on the specified motor feedback resistance value from which abnormal values have been rejected. This mode automatically changes to the control without motor feedback, when the motor feedback resistor T line is broken. 5 Control is based on the specified motor feedback resistance value from which abnormal values are not rejected. This mode automatically changes to the control without motor feedback, when the T line is broken.					
	Set point ramp	Function Sets the set point change ratio. $^{\text {L }}$					
		Range	0 to $9999 \mathrm{U} / \mathrm{min}, 0$ to $999.9 \mathrm{U} / \mathrm{min}, 0$ to $9999 \mathrm{U} / \mathrm{h}, 0$ to 999.9U/h				
		Setting	The SP ramp doe the instrument is	s not function whe operated by RSP.	Initial PV (SP) (SP)		
Optional function	Event (EV)	Number of outputs	2 points (standa				
		Types of event	Direct deviation	Reverse deviation	Direct PV	Reverse PV deviation value	Direct absolute
			Reverse absolute deviation value	Direct SP	Reverse SP	Direct MV	Reverse MV
			Direct motor feedback	Reverse motor feedback	Control loop diagnosis (Note 6)	Timer (s)	Timer (min)
			Direct alarm	Reverse alarm	Presumed position execution (Note 7)	Note: 6 Control loop This turns ON	iagnostic event when the event ON lag
			- ON			does not rise gap (does though a ma is larger tha to 100%) for Note: 7 Presumed p This turns is changed to control due tor breakage	beyond the differential fall if direct action) pulated variable value the set output value (0 his event. ition execution event when the instrument the presumed position motor feedback resis-
		Setting range	Deviation (direct, reverse): Within \pm PV range/2 (within -1999U) PV (direct, reverse): Within PV range Absolute deviation value (direct, reverse): 0 to PV range/2 SP (direct, reverse): Within SP limit MV (direct, reverse): -10.0 to $+110.0 \%$ Motor feedback (direct, reverse): 0.0 to 100.0\% Control loop diagnosis: 0.0 to 100.0% Timer (s or min): 1 to 9999 s or min				
		Differential gap	0 to 100 U (This cannot be set when the event type is alarm, timer, or presumed position execution)				
		On delay time	0 to 999 s (This cannot be set when the event type is timer or presumed position execution)				
		Standby sequence	Presence or absence selectable. (This cannot be set when the event type is alarm, timer or presumed position execution)				
		Output rating	SPST relay contact, 250Vac, 30Vdc, 3A, resistive load				
		Electrical life of relays	100,000 times or more (70,000 times or more at 5 amperes)				

Optional function	Remote switch input (RSW)	Number of input points	4 points selectable.				
		Function	Allocates an optional function selectively from SP (PID interlock), RUN/READY, AUTO/MANUAL, LOCAL/REMOTE, autotuning start, direct/reverse, and timer start.				
		Input rating	Dry contact or open collector transistor. OFF-terminal voltage: $5 \pm 1 \mathrm{~V}$, ON current: $5 \pm 2 \mathrm{~mA}$				
	Auxiliary output (AUX)	Number of AUX points	1 point				
		Output type	Selectable from process variable (PV), set point (SP), remote set point, remote set point before bias, control output, and motor open.				
		Output rating	4 to 20mAdc Load resistance: 750Ω max.				
		Output accuracy	$\pm 0.2 \%$ FS (under standard conditions)				
		Output resolution	0.01\% min.				
		Output update cycle	0.2s				
	Remote set point (RSP)	Types	4 to 20mAdc or 1 to 5Vdc, depending on controller.				
		Accuracy	$\pm 0.2 \% \mathrm{FS}$ (± 1 digit under standard conditions)				
		Sampling cycle	0.2s				
		Bias	-1999 to +9999U				
	Communication	Communication system	Communication protocols		RS-485		
			Network		Multidrop The device is provided only with the slave station function. 1 to 16 units max. (DIM), 1 to 31 units max. (CMA, SCM).		
			Data flow Synchronization		Half duplex		
					Start/stop synchronization		
		Interface system	Transmission system		Balanced (differential)		
			Signal lines		Bit serial		
					5 transmit/receive lines (3-wire connection is also possible with DIM)		
			Transmission speed		1200, 2400, 4800, 9600bps		
			Communication distance		300m max. (DIM), 500m max.		
			Others		Correspond to RS-485		
		Message characters	Character configuration		11 bits/character		
			Format		1 start bit, even parity, and 1 stop bit, or 1 start bit, no parity, and 2 stop bits		
			Data length		8 bits		
		Isolation	Completely isolated between the input and output except external switch input.				
		Note: For RS-485 communication, the device can be connected to Azbil Corporation's MX200, MA500 (DK link II DIM) or CMA50 controllers.					
General specifications	Memory backup	Non-volatile EEPROM					
	Rated power	100 to $240 \mathrm{Vac}, 50$ to 60 Hz (AC power supply model), 24Vdc (DC power supply model)					
	Operating power	85 to 264 Vac , at $50 \mathrm{~Hz}: 50 \pm 2 \mathrm{~Hz}$, at $60 \mathrm{~Hz}: 60 \pm 2 \mathrm{~Hz}$ (AC power supply model), 21.6 to 26.4 Vdc (DC power supply model)					
	Inrush current	30A max. (AC power supply model), 20A max. (DC power supply model)					
	Power consumption	18VA max. (operating)					
	Insulation resistance	More than $50 \mathrm{M} \Omega$ between the case or ground terminal and power terminal by 500Vdc megger					
	Dielectric strength	1500 Vac for 1 min between the case or ground terminal and power terminal (AC power supply model), 500 Vac 1 min (DC power supply model).					
	Operating conditions	Operating temperature 0 to $50^{\circ} \mathrm{C}$					
		Operating humidity		10 to 90\%RH			
		Vibration resistance		$2.0 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$.			
		Shock resistance		$9.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$.			
	Transport/ storage conditions	Storage temperature		-20 to $+70^{\circ} \mathrm{C}$			
		Storage humidity		10 to 95\%RH			
		Vibration resistance		$4.9 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$., 10 to 60 Hz , for 2 h each in X, Y and Z directions.			
		Shock resistance		$490 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} ., 3$ times in vertical direction when in box.			
		Package drop test		Drop height 90cm (1 angle, 3 edges, 6 planes, free fall)			
	Construction	Mask: Multilon Case: Polycarbonate					
	Colors	Mask: Dark gray Case: Light gray					
	Mounting	Panel flush mount					
	Installation	Vertical plane $\pm 15^{\circ}$					
	Weight	Approx. 500g					
Attachments	Item	Model No.		Quantity 0	Options	Item	Model No.
	Unit indicating label	N-3132		1 sheet		Hard dustproof cover	81446083-001
	Mounting bracket	81405411-001		2 pcs.		Soft dustproof cover	81446087-001
	Instruction Manual	No. CP-UM-158	86E	1 block		Terminal cover	81446084-001

Table 1 Types of Inputs and Ranges (selectable at keypad)

Type of input	Symbol	${ }^{\circ} \mathrm{C}$ range	${ }^{\circ} \mathrm{F}$ range	Type of input	Symbol	${ }^{\circ} \mathrm{C}$ range	${ }^{\circ} \mathrm{F}$ ra	
Thermocouple	(Note 1)	0 to 1200	0 to 2200	Thermocouple	$\mathrm{Ni}-\mathrm{M}_{0}$	0 to 1300	32	2372
		0.0 to 800.0	0 to 1400		DIN U	$-199.9 *$ to +400.0	-300 to	+700
		-199.9^{*} to +400.0	-300 to +700		DIN L	0.0 to 800.0	0 to	1400
	J	0 to 1200	0 to 2000	RTD	JIS Pt100	$-199.9 *$ to +500.0	-300	+700
		0.0 to 800.0	0 to 1400			-100.0 to +200.0	-150.0 to	+ 400.0
		-199.9^{*} to +400.0	-300 to +700		JIS JPt100	-199.9^{*} to +500.0	-300 to	+700
	E	0.0 to 800.0	0 to 1400			-100.0 to +200.0	-150.0	$+400.0$
	T	-199.9^{*} to +400.0	-300 to +700	DC current, voltage	4 to 20 mA	Scaling setting range -1999 to +9999 (Decimal point position is not fixed.)		
	R	0 to 1600	0 to 3000		0 to 20 mA			
	S	0 to 1600	0 to 3000		1 to 5V			
	B	0 to 1800	0 to 3200		0 to 5V			
	N	0 to 1300	32 to 2372		0 to 10 mV			
	PLII	0 to 1300	32 to 2372		0 to 100 mV			
	WRe5-26	0 to 2300	0 to 4000		-10 to +10 mV			
	WRe0-26	0 to 2300	0 to 4000					

Note 1. The RT50 output performance is same as K thermocouple.
Note 2. (*) Although -200.0 cannot be set nor indicated, the calibration has been performed at $-200.0^{\circ} \mathrm{C}$.

Model Selection Guide

1		II	III	I IV	Example: C312GA000100											
I	II	III	IV	V	Contents (\bigcirc : Included - : Not Included)											
Basic model number	Control action	Power supply	Optional function	Additional processing												
C31					Digital controller											
	OD				Time proportional PID: Relay contact, 250Vac, 5A, resistive load											
	6D				Time proportional PID: Voltage $22.5 \mathrm{Vdc} \pm 15 \%$											
	5G				Continuous PID: Current 4 to 20 mAdc , resistive load 570Ω max.											
	2G				Position proportional PID: MM drive relay contact, $250 \mathrm{Vac}, 8 \mathrm{~A}$ (resistive load), 3.5 A (indicative load)											
		A0			85 to $264 \mathrm{Vac}, 50$ to 60 Hz											
		AZ			85 to 264 Vac 50 to 60 Hz , apply to RT50											
		D0			21.6 to 26.4 Vdc											
		DZ			21.6 to 26.4 Vdc , apply to RT50											
					Event		Auxiliary output	Remote setting input		Remote switch input		Communications	RT50 applicability (Note 1)			
					EV1	EV2	AUX	$\begin{array}{\|c\|} \hline \text { RSP } \\ \text { (4 to } 20 \mathrm{~mA}) \\ \hline \end{array}$	$\begin{gathered} \text { RSP } \\ (1 \text { to } 5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { RSW } \\ \text { (1 point) } \end{gathered}$	$\begin{gathered} \text { RSW } \\ (4 \text { points) } \end{gathered}$	RS-485	OD	6D	5G	2G
			001		\bigcirc	\bigcirc	-	-	-	-	-	-				
			003		\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-				
			005		\bigcirc	\bigcirc	\bigcirc	-	-	-	\bigcirc	-				
			045		\bigcirc	\bigcirc	\bigcirc	-	-	-	\bigcirc	\bigcirc				
			405		\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-		-		
			446		\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	\bigcirc		-		
			505		\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-		-		
			546		\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc		-		
				00	Standard product											
				D0	Inspection certificate provided											
				T0	Tropical treatment											
				K0	Anit-sulfidization treatment											
				Z0	Correspondence to Zener barries											
				B0	Tropical treatment + inspection certificate provided											
				LO	Anti-sulfidization treatment + inspection certificate provided											
				E0	Correspondence to Zener barriers + inspection certificate provided											
				G0	Tropical treatment + correspondence to Zener barriers											
				F0	Anti-sulfidization treatment + correspondence to Zener barriers											
				Q0	Tropical treatment + correspondence to Zener barriers + inspection certificate											
				PO	Anti-sulfidization treatment + correspondence to Zener barriers + inspection certificate provided											
				YO	Complying with the traceability certification											

Note 1.Apply to inputs other than RT50. (Select AO at III)Apply to all inputs including RT50. (Select AZ at III)
\square Function not supported.

Dimensions

C31 Controller

Hard dust-proof cover Part No. 81446083-001

Terminal cover
Part No. 81446084-001

Panel Cutout

For standard application or with soft dust-proof cover

When the hard dust-proof cover is used

Serial mounting

Wiring

Optional functions		
045: EV1, EV2, AUX, RSW (4 points), RS-485	405: EV1, EV2, AUX, RSP, RSW (4 points) 505: EV1, EV2, AUX, RSP (1 to 5V), RSW (4 points)	446: EV1, EV2, AUX, RSP (4 to 20mA), RS-485 546: EV1, EV2, AUX, RSP (1 to 5V), RS-485
	$0 \mathrm{D}, 6 \mathrm{D}, 5 \mathrm{G}$	
	Note. When making three-wire system connection in the RS-485 type, short circuit between SDA and RDA, and between SDB and RDB of this instrument.	
\triangle SPST relay contact $250 \mathrm{Vac}, 5 \mathrm{~A}$, resistive load 2 4 to 20 mAdc , load resistance 750Ω max. 3 Off voltage: $5 \pm 1 \mathrm{~V}$, on current: $5 \pm 2 \mathrm{~mA}$ 4 Terminating resistance: $150 \Omega 1 / 2 \mathrm{~W}$ min. Connect one each terminating resistance between SDA and SDB, and between RDA and RDB	\triangle SPST relay contact $250 \mathrm{Vac}, 5 \mathrm{~A}$, resistive load 2 1 to 5 Vdc (505), 4 to 20 mAdc (405) 3 4 to 20 mAdc , load resistance 750Ω max. 4. Off voltage: $5 \pm 1 \mathrm{~V}$, on current $5 \pm 2 \mathrm{~mA}$	\triangle SPST relay contact $250 \mathrm{Vac}, 5 \mathrm{~A}$, resistive load (2) 1 to 5 Vdc (546), 4 to 20 mAdc (446) 3 4 to 20 mAdc , load resistance 750 W max. 4 Terminatig resistance: $150 \Omega 1 / 2 \mathrm{~W}$ min. Connect one each terminating resistance between SDA and SDB, and RDB

Cautions for wiring

1. Isolation

The section bounded by a solid line (-) is isolated from the rest of the circuit.

The section bounded by a dotted line (----) is not isolated from the rest of the circuit.

Loader interface	Moter feedback Potentiometer input
Remote setting input	Current output (Control output)
	Current output (Auxiliary output)
PV input	Voltage output (Control output)
	Relay output (Cotrol output)
	Event output 1
	Event output 2
Remote switch input	Communication I/O

2. Power supply noise

(1) Noise reduction techniques

Always use a noise filter to suppress the influence of noise as much as possible, even if noise is unnoticeable.

(2) When noise is evident

If noise is observable, suppress it by using an insulation transformer and line filter.

3. Noise

Possible noise sources in the installation environment are:
Relays and contacts, electromagnetic coils, solenoid valves, power lines (specifically, those higher than 100 Vac), motor commutators, phase angle control SCRs, radio equipment, welding machines, high-voltage ignition devices, etc.
(1) Suppression techniques for quick rising noise

A CR filter is effective for quick rising noise.
Recommended filter: Matsuo Electric 953M50033331
(2) Suppression technique, for noise with large peaks:

A varistor is effective for reducing noise with large peaks. However, care should be taken to avoid shorting if varistor is faulty.

4. Grounding

Ground this controller at a single point to GND terminal (3) to (4). Don't connect any jumper wiring. Prepare a grounding terminal board separately if grounding of a shield wire is difficult.
Grounding type: At least category 3 (100Ω max.)
Grounding wire: Soft steel wire (AWG14) of more than $2 \mathrm{~mm}^{2}$.
Grounding wire length: 20 m max.

5. Wiring operations

(1) Don't bundle the primary and secondary power lines together, and don't run them in the same wiring conduit or duct after carrying out noise countermeasures.
(2) Run the input/output and communication lines more than 50 cm from drive power or power lines of higher than 100 Vac. Don't run these wires in the same wiring conduit or duct.

6. Check after wiring

After wiring, be sure to check the connecting line conditions. Be careful: incorrect wiring will cause the instrument to fail.

Please read the "Terms and Conditions" from the following URL before ordering or use:
http://www.azbil.com/products/bi/order.html

Specifications are subject to change without notice

Azbil Corporation

Advanced Automation Company

1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan
URL: http://www.azbil.com/

